Q [

e

Stony Brook Center for Frontiers
University in Nuclear Science

EIC Compton laser

Ciprian Gal, Abhay Deshpande, Dave Gaskell,
Caryn Palatchi, Kent Paschke, Shukui Zhang

e 2

Jefferson Lab

s LN

IVERSITY
TRGINIA



e-Polarimetry at the EIC
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e-Polarimetry requirements for the EIC
Fast Precise

. i * Distance between buckets is ~10ns
At 18 GeV_bunches will be replaced (@5.10 GeV)
every 2 min * bunch by bunch measurement cannot be
* Afull polarimetry measurement ggtneec%"c’)'rt? a CW laser without very fast
needs to happen in a shorter time e For systematic studies we would like to
Span have the ability to either measure a
e Th £ ol b h single bunch (~78kHz) or have
The amount of electrons per bunc interactions with all 1160 (260)
is fairly small ~24 nC bunches at 10 and 5 GeV (18GeV)
* will need bright laser beam to obtain ) CBgrc]lg;gorloundS needs to be under
needed luminosity o
. _ * Laser polarization needs to be known
A fast polarimeter will allow for to a high degree

faster machine setup
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Compton scattering basics
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* Polarized photon-electron scattering
* Potential to measure redundantly with scattered photon and electron
* Fully QED calculable analyzing power

* Interactions happen with a small fraction of the beam particles leaving it
undisturbed
* Monitoring can be performed in real time during actual data taking
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Compton polarimeters through history

CERN LEP (T) 46 GeV
HERA (T) 27 GeV
HERA (L) 27 GeV
HERA (L) 27 GeV

SLD at SLAC (L)  45.6 GeV
JlabHallA(L)  1-6 GeV
JlabHallC(L)  1.1GeV

5%
1.9%
1.6%

1%
0.5%
1-3%
0.6%

~10s Hz pulsed Nd:YAG (532nm): 50 -100 W
CW 10W (514.5nm) Argon

100Hz pulsed 10W Nd:YAG (532nm)

CW cavity 3 kW,

17 Hz pulsed ?? W Nd:YAG (532nm)

CW cavity 3.7 kW Nd:YAG (532nm)

CW cavity 1.7 kW Nd:YAG (532nm)

Multi-photon
Single-photon
Single/Multi-photon
Single-photon
Multi-photon
Single/Multi-photon
Single/Multi-photon

* Beyond LEP there were quite a few transverse polarimeters around the
world that were used for beam diagnostics (an absolute polarization was

not in the plan)

* Pulsed lasers generally tend to give more interactions per crossing so a
multi-photon (or integrating) method was employed
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e-Polarimetry requirements for the EIC

Fast

* At 18 GeV bunches will be replaced
every 2 min

* A full polarimetry measurement
needs to happen in a shorter time
span

* The amount of electrons per bunch
is fairly small ~24 nC

* will need bright laser beam to obtain
needed luminosity

* A fast polarimeter will allow for
faster machine setup
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Compton scattering basics

ot —o—+  2mrla 1 _ 2mrja | VAap(1 - p)
Along = ot+t o+  (do/dp) (1-p(1+a)) {1 (1= p(1— (,5))2] Atran = (do /dp) €05 ¢ [{J(l @) (1—p(1—a))
0.7 0.3
06 e beam E=5 GeV E |
o5 * beam E10 GeV 025/ -Analyzing powerat ¢ =0
- /"\
e beam E=18 GeV ' 0.2 : yd AN
Joo TN
ol /// \\
- P
: o.osf /;/ \\\\\
02 | | | | | : %/ \\
% oi 02 03 04 065 06 07 08 09 1 00'“54{6.1' ~ 02 03 04 05 06 07 08 09 1
Y
* Calculations based on 532nm laser system 12 .
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* For both the longitudinal and transverse
polarimetry measurements at the energies of
Interested tor the EIC the analyzing powers are
significant EDa = 4aBasery? p = Ey[EP™

ers 5 o1 A= - .
1+ af242 1 + 47y Ejaser /Te
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Transverse polarization T T T | — s
B 271r2a 1 B VAdap(1 — p) -0 1: e beam E=10GeV
Agran = (dﬂ'/dﬂ) cos ¢ lp(l a‘) (1 B p(] B (l))] - ; e beam E=18GeV
B <
:3 1 08 06 _0.4vert_io(.32a|-p OOSi’[i-O r%).z[cmlo.4 0.6 08 1
T * Asymmetry is usually measured with respect
electron polXsec z=25000 mm to the Ve rtic al a Xis

y[mm]

* The scattered electron reaches the largest
analyzing power at large scattering angles

* The higher the energy the tighter the
collimation of the scattered photons will be

03 ’ * This leads to significant constraints on detector
N segmentation

%5 04 -03 -02 -01 0 01 02 03 04 05
x[mm]
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Luminosity calculations for individual bunches

L o 2 -

o unpol . AP, .

NCompton S tﬂmth — (f, {T(::[_nnptun ng?r ( P L) Aimth)
f beam ¢

G. Bardin, et al., Conccptual-dcsign. report of a compton polarimeter in cebaf hall a, JLab Internal note.

* Assuming one scattered particle per bunch would allow us to calculate the
luminosity needed and a time estimate for how long it would take to reach a 1%
statistical precision

Beam energy [GeV] Unpol Xsec[barn] AN t[s] t[min] L [1/(barn*s)]
5 0.569 0.029 210 3.5 1.37E+05
10 0.503 0.050 72 1.2 1.55E+05
18 0.432 0.075 31 0.5 1.81E+05

* For all configurations envisioned for the EIC (5-18 GeV) the luminosity requirements
are on the level of few 1/(barn*s)

. 'I('sh%times needed to the needed statistics for the signal are on the level 30s at 18
e

* Lower energies are less of a concern due to the longer lived stores
* This would allow for simultaneous measurement of all bunches (given a fast detector)
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Luminosity calculations for individual bunches

L = [folN1N2

cos (0/2) 1

1

X
T Jlotatots) (05 +oha) os? (0/2) + (02, + 025) sin? (02

(1)

S. Verdu-Andres (CAD): https://www.bnl.gov/isd/documents/95396.pdf
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* The dependence of the luminosity of
crossing angle needs to take into
account the transverse profile of the
beam and the length of the pulse

e The estimation on the left is made for
a single pulse

* For a 10W 100MHz pulsed laser with a
12ps pulse can provide about 6*10°
1/(barn*s) of luminosity

* Comparing this to the single photon
measurement luminosities shows that
such a laser will be sufficient



e-Polarimetry requirements for the EIC
Precise

* Distance between buckets is ~10ns
(@5,10 GeV)
* bunch by bunch measurement cannot be

done with a CW laser without very fast
detectors

* For systematic studies we would like to
have the ability to either measure a
single bunch (~78kHz) or have
interactions with all 1160 (260)
bunches at 10 and 5 GeV (18GeV)

* Backgrounds needs to be under
control

* Laser polarization needs to be known
to a high degree
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HERA Transverse Polarimeter

Entrance Window
Calonmeter
Compton 2

om -
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 Measurement extracted from an up-down energy
asymmetry

* Chopper used for making background measurement

e Background measurements (and simulation cross
checks) are very important to reach high precision

* Beyond Compton scattering we need to measure beam only
and laser “only” backgrounds (flexibility for the laser is
crucial)

* Leading systematic was related to the detector
e Systematics for laser were lower

Q\\\\ Stony Brook University Ciprian Gal

Energy asymmetry 1
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SLD: M. Woods arXiv:hep-ex/9611005v1

Compton laser setup,, ...

Intensity Photodiode Calcite
Sampler Prism
Laser Laser
Nd:-YAG Laser Q@— Transport 1 @1 Transport 2 m
R
. Compton -
Linear CP Pockels PS Pockels
Polarizer Cell Cell IP Quarterwave .
Quarterwave Plate Left,Right
Plate ) Photodiodes
Prism Left, Right Photodiodes
* The Compton laser systems are 2= A o H}' LPSCANS
. § o 3 § % FLE ’ » done once per hour; readout photodiodes only
fa I rly Sta nda rd ] g v : 0 %Q'.h‘_ ..ﬁ'um H « ability to extinguish laser light after
. . N0 fs 8 '§‘*° = | 1 Helicity Filter determines polarization purity
o ~—-=20 :l {
* The SLD laser monitoring setup ’: :_%%ﬁ amt ]
already had most of the tools we < cEMend BT Rl
WOU| d N eed CP Voltage (Volts) % CP Voltage (Volts)
> 052 E e P
1 5 - 60 e
* Scans performed with the PC £ ot % ESCANS o
: : % o » monitor phase shifts in laser |
durlng the experlment and data : P C £ J; Polarization with continuou$” [
. P S 046 | Pockels cell 30
taking allowed for significantly E T L conly I3 ofdataisat 20 b
. Sl inal volt -
reduced systematics related to the ¥ e [t lominalvoliages o
. . . :‘ L L L 0 Erons inloims Montd™ 0 o 1
polarization state of the laser Laser Polaioation ot Compton P (%

CP Voltage (Volts)  mmmmmlpy () 19/, systematic €rror M. Woods, SLAC
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DOCP through windows

* Typically the polarization is monitored
through measurements of the
transmitted laser light (after the IP)

* The “transfer function” can be
measured on the bench but variations
(such as tightening bolts or pulling
vacuum) change the function making
it unusable for the actual data taking

* Tests done with cavity at JLab showed
that large differences in the degree of
circular polarization can be obtained
when straining the windows
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State 1: DOCP in exit line

DOCP

100
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99

98.5

98

a7.5
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96.5

96

# unlocked, M2 out

# locked
locked 2

# locked (closed)
locked (200 Torr)
locked (1 Torr)
locked (post bake)

6 68 69 70 T T2 T3 T4 75
QWP angle




arXiv:1509:06642v2

Dealing with window birefringence

* [n order to obtain circular polarization at i £ Ve e W £ . oM .
the interaction point with the electron - - - 0 O :
beam one can use the information < x T1=15 (:( = D
obtained from the back-reflected light PS 4 £

* In this case it would be off of mirror M1 N

* Using the optical reversibility theorem o
one can relate the amount of light 1
reaching “PS” to the degree of circular ° |
polarization inside the cavity o 08

« M. Dalton and D. Jones showed this to be £ ol i
true in a setup at JLab > | i
o - IR

* By performing detailed scans of the half §°4
and quarter wave plates one can o ool
maximize the circular light at the IPand o | , |
monitor it throughout the data taking O g 998l

Polarization Signal Polarization Signal
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Current design of EIC laser system
—pmy

Gain switched seed

Clean up polarizer G [ —
I Insertable mirror
} QWP HWP
| 4 A=
el Pockels T _
~ cell PBS/analyzer Back-reflected|light
Beam pipe Window

* The initial laser system design uses most of the design features highlighted in the
previous Compton polarimeter implementations

* As was before we need the laser system to be away from potential fatal radiation fields inside
the tunnel (we plan to evaluate the use of high power laser fiber)

* The vacuum resident insertable mirror will be needed in order to be able to
monitor the DOCP at the interaction point
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Gain switched seed

* The gain switched seed laser design
developed at CEBAF for the injector
sgtlsfles all the requirements that we s - :__E_@
discussed so far DM

* The RF lock allows us to synchronize to all or
specific electron bunches L

* The pulse longitudinal width will be smaller L—I\/
than the electron bunch (allowing us to RE ISO

potentially measure the longitudinal @ b SR H
polarization profile) % Bias Network

* The PPLN or LBO crystal will allow us to
%DC Current

Fiber Amp

frequency double the 1064nm light to 532

* The system has proven to be very reliable
and has been adopted by other facilities Phys. Rev. ST Accel. Beams 9, 063501 (2006)
(SUCh as the Malntz MlcrOtron) https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.9.063501
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Project and Deliverables

* Detail design of  High power fiber . IChECk 1?0% DOCP
L aser polarization
laser system amplifier through vacuum
* Seed and preamp * Fiber delivery windows
construction * Frequency doubler * Remote control
* Low power . Desi stages
characterization eslgh vacuum » Picomotor controller

system _
e Potential test at JLab

e Publish results
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Budget

[tem

Cost|[$]

Seed: Laser diode
Seed: Pulse driver
Seed: Preamplifier
Seed: Controllers
Seed: Fiber optics

12000
20000
10000
13000

2000

Gain switched seed and preamplifier total
Fiber power amplifier
Single-mode fiber (20m)
Frequency doubler

60000
45000
5000
2000

Item Cost[$]
QWP (2) 1000
HWP 500
Pockels cell 2500
Polarizing cubes (3) 260
Mirrors (10) 700
Remote controlled stages (3) | 10700
Picomotor controller (2) 3100
Assorted stands 2000
20760

Total

115000

Total

* The proposed system has two major components

* The laser itself and fiber transport
* The optics needed to prepare and characterize the laser polarization

* Labor to be provided by collaborative institutions with SBU taking the lead
and JLab and UVa playing a technical supervisory role

* 0.3 FTE C. Gal; 0.3 FTE CFNS/joint postdoc; 0.5 FTE SBU Master student for the first year

19
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Budget
Ttem Cost[$] Ttem Cost|[3]
Seed: Laser diode 12000 QWP (2) 1000
Seed: Pulse driver 20000 HWP 500
Sod: Contrellrs 13000 | odkels call o
eed: Controllers -
Seed: Fiber optics 5000 o Mi e m(ﬂljg)ﬂ (3) ggg
Gain switched seed and preamplifier total | 60000 -
Fiber power amplifier 45000
Single-mode fiber (20m) 5000
Frequency doubler 5000 Assorted stands 2000
Total 115000 Total | 20760

20

q\\\‘ Stony Brook University Ciprian Gal



Summary and Challenges

* A Compton polarimeter is the ideal system to
measure and monitor e-beam polarization

* The proposed system would satisfy all the S~
requirements for the EIC Compton S
polarimeter and reach ~1% uncertainties

* The 10W laser power would be sufficient to
obtain at least one collision per bunch crossing

allowing us to make a fast measurement of each
bunch

Long fiber to tunnel

* The variable frequency would allow for .—»
background measurements and systematic Gain swiched seed
studies

Insertable mirror

the characterization and continuous monitoring
of the laser polarization properties B

* The high power fiber transport will need to be 20 s de
tested in order to allow for a robust system Beampipe  wWindo

QWP HWP

—

* The proposed optics elements would allow for Clean up plarcer T «
/

:

o
3
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Backup
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Layout at IP12
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* As the scattered particles pass through the different magnets the electrons are
stretched horizontally

* At the detector plane we can clearly see both the spatial and energy dependence
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Detector segmentation

—0.2

0.04

o
(%]

o * By segmenting the simulated 2
signal vertically and £ o AN
assigning an arbitrar g | [ M d b
, norrgn al izgation one cayn use [P, ] Ny '{{lﬂ'ﬁm
' the unbinned distribution to N
- extract the normalization I S
-0.04 02 . . . 5 4 3 -2 <1 0 1 2 3 4 5
okt L L L ] * This rough analysis gives us a Vertical position (mm)
o feel for what the vertical
Input normalization: 73% segmentation of the two Input normalization: 85%
segmentation  Extracted detectors will need to be segmentation Extracted
[um] normalization * For the photon detector a [um] normalization
400 30.53 segmentation of better than 500 77.7
200 75.71 200 micron will be needed 400 80.4
100 73.74 * The electron detector will 333.33 82.7
50 73.43 require a 50 micron or better 200 84.4
10 73.01 segmentation 100 85.1
5 73.00 50 85.0
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Lasers as a function of wavelength
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* When looking for a laser we need to take into account ease of setup and reliability
* There is a good reason most Compton polarimeters used Nd:YAG lasers at their core

ULTRAVIOLET ———»

NEAR-INFRARED MID-INFRARED

900 nm 1pm

* Alow power Nd:YAG laser can be amplified quite readily to larger powers without much custom

equipment

* Additionally we need to make sure we can have enough power from the laser to
provide sufficient luminosity (few Watts of power will be needed)
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